Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 18, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Recent advancements in semiconductor technologies have stimulated the growth of ultra-low power wearable devices. However, these devices often pose critical constraints in usability and functionality because of the on-device battery as the primary power source [1]. For example, periodic charging of wearable devices hampers the continuous monitoring of users' fitness or health conditions [2], and batteries and charging equipment have been identified as one of the most rapidly growing electronic waste streams [3]. To counteract the above-mentioned complications associated with the management of on-device batteries, wireless power transmission technologies capable of charging wearable devices in a completely unobtrusive and seamless manner have become an emerging topic of research over the past decade [4]. Researchers have instrumented daily objects or the surrounding environment with equipment that can wirelessly transfer energy from a variety of sources, such as Radio Frequency (RF) signals, laser, and electromagnetic fields [5]. However, these solutions require large and costly infrastructure and/or need to transmit a significant amount of power to support reasonable power harvesting at the wearable devices, which conflict with the vision of ubiquitously available and scalable charging support.more » « less
An official website of the United States government
